Aggregation in colloidal suspensions: effect of colloidal forces and hydrodynamic interactions.
نویسندگان
چکیده
The forces acting in colloidal suspensions and affecting their stability and aggregation kinetics are considered. The approximations used for these forces in numerical simulations and the importance of the balanced account for both colloidal forces and hydrodynamic interactions are discussed. As an example the results of direct numerical simulations of kinetics of aggregation either with account for hydrodynamic interaction between particles or without it are compared by varying the parameters of the interaction potential between particles and fraction of solid. Simulations are based on the Langevin equations with pairwise interaction between particles and take into account Brownian, hydrodynamic and colloidal forces. It is confirmed that the neglecting of hydrodynamic interaction results in an accelerated growth of aggregates. The results of numerical simulations of aggregation kinetics are compared with well known analytical solutions.
منابع مشابه
Simulation method of colloidal suspensions with hydrodynamic interactions: fluid particle dynamics
We develop a new simulation method of colloidal suspensions, which we call a "fluid particle dynamics" (FPD) method. This FPD method, which treats a colloid as a fluid particle, removes the difficulties stemming from a solid-fluid boundary condition in the treatment of hydrodynamic interactions between the particles. The importance of interparticle hydrodynamic interactions in the aggregation p...
متن کاملMicro-mechanics of electrostatically stabilized suspensions of cellulose nanofibrils under steady state shear flow.
In this study, we characterized and modeled the rheology of TEMPO-oxidized cellulose nanofibril (NFC) aqueous suspensions with electrostatically stabilized and unflocculated nanofibrous structures. These colloidal suspensions of slender and wavy nanofibers exhibited a yield stress and a shear thinning behavior at low and high shear rates, respectively. Both the shear yield stress and the consis...
متن کاملHydrodynamic interactions enhance gelation in dispersions of colloids with short-ranged attraction and long-ranged repulsion.
We show that discrete element simulations of colloidal gelation must account for hydrodynamic interactions between suspended particles through investigation of gelation in a dispersion of colloids interacting pair-wise via short-ranged attraction and long-ranged repulsion (SALR). These dynamic simulations juxtapose self-assembly with and without hydrodynamic interactions between the particles. ...
متن کاملThermophoresis in colloidal suspensions driven by Marangoni forces.
In a hydrodynamic approach to thermophoretic transport in colloidal suspensions, the solute velocity u and the solvent flow v(r) are derived from Stokes' equation, with slip boundary conditions imposed by thermal Marangoni forces. The resulting fluid velocity field v(r) significantly differs from that induced by an externally driven particle. We find, in particular, that thermophoresis due to s...
متن کاملINTERACTIONS IN COLLOIDAL SUSPENSIONS Electrostatics, Hydrodynamics and their Interplay
These lecture notes address some recent advances in our understanding of macroionic interactions inspired in part by the evolution of new techniques for studying macroions’ dynamics. Introduction Charged colloidal particles suspended in water interact through hard core repulsions, van der Waals attractions, Coulomb interactions, and hydrodynamic coupling. The particles’ influence on the surroun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advances in colloid and interface science
دوره 179-182 شماره
صفحات -
تاریخ انتشار 2012